
OS Security
Authentication and Authorization

Radboud University, Nijmegen, The Netherlands

Winter 2016/2017

What does an OS do?

De�nition
An operating system (OS) is a computer program that manages access of
processes (programs) to shared resources.

Examples of shared resources

I Memory

I Input and Output (I/O) including
I Files on the hard drive
I Network

I Computation cycles on the processor(s)

I Peripheral hardware (keyboard, screen, . . .)

OS Security � Authentication and Authorization 2

What does an OS do?

De�nition
An operating system (OS) is a computer program that manages access of
processes (programs) to shared resources.

Examples of shared resources

I Memory

I Input and Output (I/O) including
I Files on the hard drive
I Network

I Computation cycles on the processor(s)

I Peripheral hardware (keyboard, screen, . . .)

OS Security � Authentication and Authorization 2

What does that mean for security?

I Operating system needs to decide whether processes are allowed to
perform certain operations

I Obvious security disasters:
I One process reading the memory of another process
I A process reading a �secret� �le
I A process preventing other processes from operating
I One process reading (keyboard) input meant for another process

OS Security � Authentication and Authorization 3

Wait, what about users?

I Is the process with ID 4321 allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Is user peter allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Need to map between a user (human) and a certain operation

De�nition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure

I Start a shell mapped to the logged-in user

I A shell is (basically) an interface to run other programs

I All programs run from this shell are mapped to the logged-in user

I Worst-case authentication failure: impersonation

OS Security � Authentication and Authorization 4

Wait, what about users?

I Is the process with ID 4321 allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Is user peter allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Need to map between a user (human) and a certain operation

De�nition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure

I Start a shell mapped to the logged-in user

I A shell is (basically) an interface to run other programs

I All programs run from this shell are mapped to the logged-in user

I Worst-case authentication failure: impersonation

OS Security � Authentication and Authorization 4

Wait, what about users?

I Is the process with ID 4321 allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Is user peter allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Need to map between a user (human) and a certain operation

De�nition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure

I Start a shell mapped to the logged-in user

I A shell is (basically) an interface to run other programs

I All programs run from this shell are mapped to the logged-in user

I Worst-case authentication failure: impersonation

OS Security � Authentication and Authorization 4

Wait, what about users?

I Is the process with ID 4321 allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Is user peter allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Need to map between a user (human) and a certain operation

De�nition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure

I Start a shell mapped to the logged-in user

I A shell is (basically) an interface to run other programs

I All programs run from this shell are mapped to the logged-in user

I Worst-case authentication failure: impersonation

OS Security � Authentication and Authorization 4

Wait, what about users?

I Is the process with ID 4321 allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Is user peter allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Need to map between a user (human) and a certain operation

De�nition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure

I Start a shell mapped to the logged-in user

I A shell is (basically) an interface to run other programs

I All programs run from this shell are mapped to the logged-in user

I Worst-case authentication failure: impersonation

OS Security � Authentication and Authorization 4

Wait, what about users?

I Is the process with ID 4321 allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Is user peter allowed to read the �le
/home/peter/os-security/exam-jan-2017.pdf?

I Need to map between a user (human) and a certain operation

De�nition
Authentication is the means by which it is determined that a particular
entity (typically a human) intends to perform a given operation.

I Typically perform user authentication as a login procedure

I Start a shell mapped to the logged-in user

I A shell is (basically) an interface to run other programs

I All programs run from this shell are mapped to the logged-in user

I Worst-case authentication failure: impersonation

OS Security � Authentication and Authorization 4

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

The user root

I UNIX and Linux have a special superuser called root

I The user ID of root is always 0

I root may access all �les

I root may change permissions on all �les

I root may bind programs to network sockets with port number
smaller than 1024

I root may �impersonate� any other user

I A process belonging to root may change its user ID to that of
another user

I Once a process has changed from user ID 0 to another user ID,
there is no way back

I There are still certain actions that a program run by root cannot do
(more next lecture)

I Security nightmare: an attacker who gets root access

OS Security � Authentication and Authorization 5

Classical UNIX/Linux authentication

I Authentication by �what you know�

I Init process starts login (runs as root)

I login prompts for username and password

I Correct password: login changes to new user and executes a shell

I Comparison of password hash against info stored in /etc/shadow

(originally /etc/passwd)

OS Security � Authentication and Authorization 6

Classical UNIX/Linux authentication

I Authentication by �what you know�

I Init process starts login (runs as root)

I login prompts for username and password

I Correct password: login changes to new user and executes a shell

I Comparison of password hash against info stored in /etc/shadow

(originally /etc/passwd)

OS Security � Authentication and Authorization 6

Classical UNIX/Linux authentication

I Authentication by �what you know�

I Init process starts login (runs as root)

I login prompts for username and password

I Correct password: login changes to new user and executes a shell

I Comparison of password hash against info stored in /etc/shadow

(originally /etc/passwd)

OS Security � Authentication and Authorization 6

Password hashing algorithms

I Traditionally Linux used crypt for password hashing

I Truncate the password to 8 characters, 7 bits each

I Encrypt the all-zero string with modi�ed DES with this 56-bit key

I Iterate encryption for 25 times (later: up to 224 − 1)

I Incorporate a 12-bit (later: 24-bit) salt

I Use modi�ed DES to prevent attacks with DES hardware

I Originally computing the hash cost ≈ 1 second

I Too weak nowadays to o�er strong protection

I Successors: MD5, bcrypt (based on Blow�sh), SHA-2

I Password hash string indicates which algorithm to use:
I 1: MD5;
I $2a$, $2b$, $2x$, $2y$: variants of bcrypt
I 5: SHA-256; 6: SHA-512

I Better algorithm through https://password-hashing.net/

I Winner announced on Nov 2, 2015: ARGON2

OS Security � Authentication and Authorization 7

https://password-hashing.net/

Password hashing algorithms

I Traditionally Linux used crypt for password hashing

I Truncate the password to 8 characters, 7 bits each

I Encrypt the all-zero string with modi�ed DES with this 56-bit key

I Iterate encryption for 25 times (later: up to 224 − 1)

I Incorporate a 12-bit (later: 24-bit) salt

I Use modi�ed DES to prevent attacks with DES hardware

I Originally computing the hash cost ≈ 1 second

I Too weak nowadays to o�er strong protection

I Successors: MD5, bcrypt (based on Blow�sh), SHA-2

I Password hash string indicates which algorithm to use:
I 1: MD5;
I $2a$, $2b$, $2x$, $2y$: variants of bcrypt
I 5: SHA-256; 6: SHA-512

I Better algorithm through https://password-hashing.net/

I Winner announced on Nov 2, 2015: ARGON2

OS Security � Authentication and Authorization 7

https://password-hashing.net/

Password hashing algorithms

I Traditionally Linux used crypt for password hashing

I Truncate the password to 8 characters, 7 bits each

I Encrypt the all-zero string with modi�ed DES with this 56-bit key

I Iterate encryption for 25 times (later: up to 224 − 1)

I Incorporate a 12-bit (later: 24-bit) salt

I Use modi�ed DES to prevent attacks with DES hardware

I Originally computing the hash cost ≈ 1 second

I Too weak nowadays to o�er strong protection

I Successors: MD5, bcrypt (based on Blow�sh), SHA-2

I Password hash string indicates which algorithm to use:
I 1: MD5;
I $2a$, $2b$, $2x$, $2y$: variants of bcrypt
I 5: SHA-256; 6: SHA-512

I Better algorithm through https://password-hashing.net/

I Winner announced on Nov 2, 2015: ARGON2

OS Security � Authentication and Authorization 7

https://password-hashing.net/

Password hashing algorithms

I Traditionally Linux used crypt for password hashing

I Truncate the password to 8 characters, 7 bits each

I Encrypt the all-zero string with modi�ed DES with this 56-bit key

I Iterate encryption for 25 times (later: up to 224 − 1)

I Incorporate a 12-bit (later: 24-bit) salt

I Use modi�ed DES to prevent attacks with DES hardware

I Originally computing the hash cost ≈ 1 second

I Too weak nowadays to o�er strong protection

I Successors: MD5, bcrypt (based on Blow�sh), SHA-2

I Password hash string indicates which algorithm to use:
I 1: MD5;
I $2a$, $2b$, $2x$, $2y$: variants of bcrypt
I 5: SHA-256; 6: SHA-512

I Better algorithm through https://password-hashing.net/

I Winner announced on Nov 2, 2015: ARGON2

OS Security � Authentication and Authorization 7

https://password-hashing.net/

Password hashing algorithms

I Traditionally Linux used crypt for password hashing

I Truncate the password to 8 characters, 7 bits each

I Encrypt the all-zero string with modi�ed DES with this 56-bit key

I Iterate encryption for 25 times (later: up to 224 − 1)

I Incorporate a 12-bit (later: 24-bit) salt

I Use modi�ed DES to prevent attacks with DES hardware

I Originally computing the hash cost ≈ 1 second

I Too weak nowadays to o�er strong protection

I Successors: MD5, bcrypt (based on Blow�sh), SHA-2

I Password hash string indicates which algorithm to use:
I 1: MD5;
I $2a$, $2b$, $2x$, $2y$: variants of bcrypt
I 5: SHA-256; 6: SHA-512

I Better algorithm through https://password-hashing.net/

I Winner announced on Nov 2, 2015: ARGON2

OS Security � Authentication and Authorization 7

https://password-hashing.net/

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters

2. Convert password to all-uppercase
3. Pad to 14 bytes
4. Split into two 7-byte halves
5. Use each of the halves as a DES key
6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters
2. Convert password to all-uppercase

3. Pad to 14 bytes
4. Split into two 7-byte halves
5. Use each of the halves as a DES key
6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters
2. Convert password to all-uppercase
3. Pad to 14 bytes

4. Split into two 7-byte halves
5. Use each of the halves as a DES key
6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters
2. Convert password to all-uppercase
3. Pad to 14 bytes
4. Split into two 7-byte halves

5. Use each of the halves as a DES key
6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters
2. Convert password to all-uppercase
3. Pad to 14 bytes
4. Split into two 7-byte halves
5. Use each of the halves as a DES key

6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters
2. Convert password to all-uppercase
3. Pad to 14 bytes
4. Split into two 7-byte halves
5. Use each of the halves as a DES key
6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

How about Windows?

I Traditionally, Windows uses the LM hash (for �LanMan hash� or
�LAN manager hash�)

I Algorithm for LM hash:

1. Restrict password to 14 characters
2. Convert password to all-uppercase
3. Pad to 14 bytes
4. Split into two 7-byte halves
5. Use each of the halves as a DES key
6. Encrypt the �xed ASCII string KGS!@#$%

7. Concatenate the two ciphertexts to obtain the LM hash

OS Security � Authentication and Authorization 8

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords

I Can crack the halves independently: 246 for each half

I All characters converted to upper case: 243 for each half

I No salt, rainbow tables are feasible

I Passwords shorter than 8 characters produce hash ending in
0xAAD3B435B51404EE

I Cracking LM hashes is fairly easy, there are even online services, e.g.,
http://rainbowtables.it64.com/

OS Security � Authentication and Authorization 9

http://rainbowtables.it64.com/

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords

I Can crack the halves independently: 246 for each half

I All characters converted to upper case: 243 for each half

I No salt, rainbow tables are feasible

I Passwords shorter than 8 characters produce hash ending in
0xAAD3B435B51404EE

I Cracking LM hashes is fairly easy, there are even online services, e.g.,
http://rainbowtables.it64.com/

OS Security � Authentication and Authorization 9

http://rainbowtables.it64.com/

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords

I Can crack the halves independently: 246 for each half

I All characters converted to upper case: 243 for each half

I No salt, rainbow tables are feasible

I Passwords shorter than 8 characters produce hash ending in
0xAAD3B435B51404EE

I Cracking LM hashes is fairly easy, there are even online services, e.g.,
http://rainbowtables.it64.com/

OS Security � Authentication and Authorization 9

http://rainbowtables.it64.com/

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords

I Can crack the halves independently: 246 for each half

I All characters converted to upper case: 243 for each half

I No salt, rainbow tables are feasible

I Passwords shorter than 8 characters produce hash ending in
0xAAD3B435B51404EE

I Cracking LM hashes is fairly easy, there are even online services, e.g.,
http://rainbowtables.it64.com/

OS Security � Authentication and Authorization 9

http://rainbowtables.it64.com/

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords

I Can crack the halves independently: 246 for each half

I All characters converted to upper case: 243 for each half

I No salt, rainbow tables are feasible

I Passwords shorter than 8 characters produce hash ending in
0xAAD3B435B51404EE

I Cracking LM hashes is fairly easy, there are even online services, e.g.,
http://rainbowtables.it64.com/

OS Security � Authentication and Authorization 9

http://rainbowtables.it64.com/

LM Hash weaknesses

I 14 printable ASCII characters give ≈ 292 passwords

I Can crack the halves independently: 246 for each half

I All characters converted to upper case: 243 for each half

I No salt, rainbow tables are feasible

I Passwords shorter than 8 characters produce hash ending in
0xAAD3B435B51404EE

I Cracking LM hashes is fairly easy, there are even online services, e.g.,
http://rainbowtables.it64.com/

OS Security � Authentication and Authorization 9

http://rainbowtables.it64.com/

NT hashes

I LM hash weaknesses were addressed by NT hash (or NTLM)

I NTLMv1 uses MD4 to hash passwords

I NTLMv2 uses MD5 to hash passwords

I Passwords are still unsalted

I Until Windows XP, LM hashes were still enabled by default for
backwards compatibility

I Today, Windows uses multiple di�erent approaches for passwords

OS Security � Authentication and Authorization 10

NT hashes

I LM hash weaknesses were addressed by NT hash (or NTLM)

I NTLMv1 uses MD4 to hash passwords

I NTLMv2 uses MD5 to hash passwords

I Passwords are still unsalted

I Until Windows XP, LM hashes were still enabled by default for
backwards compatibility

I Today, Windows uses multiple di�erent approaches for passwords

OS Security � Authentication and Authorization 10

NT hashes

I LM hash weaknesses were addressed by NT hash (or NTLM)

I NTLMv1 uses MD4 to hash passwords

I NTLMv2 uses MD5 to hash passwords

I Passwords are still unsalted

I Until Windows XP, LM hashes were still enabled by default for
backwards compatibility

I Today, Windows uses multiple di�erent approaches for passwords

OS Security � Authentication and Authorization 10

Weak passwords

I Largest problem with passwords: weak passwords

I Remember 1987 Mel Brooks movie �Spaceballs� . . . ?

I Most common passwords in 2014 (SplashData list):

I Place 3: 12345
I Place 2: password
I Place 1: 123456

I Exercises in 1st semester course include breaking (unsalted) hash of
a 7-character random password.

I Some students typically manage to do that in a week!

OS Security � Authentication and Authorization 11

Weak passwords

I Largest problem with passwords: weak passwords

I Remember 1987 Mel Brooks movie �Spaceballs� . . . ?

I Most common passwords in 2014 (SplashData list):

I Place 3: 12345
I Place 2: password
I Place 1: 123456

I Exercises in 1st semester course include breaking (unsalted) hash of
a 7-character random password.

I Some students typically manage to do that in a week!

OS Security � Authentication and Authorization 11

Weak passwords

I Largest problem with passwords: weak passwords

I Remember 1987 Mel Brooks movie �Spaceballs� . . . ?

I Most common passwords in 2014 (SplashData list):
I Place 3: 12345

I Place 2: password
I Place 1: 123456

I Exercises in 1st semester course include breaking (unsalted) hash of
a 7-character random password.

I Some students typically manage to do that in a week!

OS Security � Authentication and Authorization 11

Weak passwords

I Largest problem with passwords: weak passwords

I Remember 1987 Mel Brooks movie �Spaceballs� . . . ?

I Most common passwords in 2014 (SplashData list):
I Place 3: 12345
I Place 2: password

I Place 1: 123456

I Exercises in 1st semester course include breaking (unsalted) hash of
a 7-character random password.

I Some students typically manage to do that in a week!

OS Security � Authentication and Authorization 11

Weak passwords

I Largest problem with passwords: weak passwords

I Remember 1987 Mel Brooks movie �Spaceballs� . . . ?

I Most common passwords in 2014 (SplashData list):
I Place 3: 12345
I Place 2: password
I Place 1: 123456

I Exercises in 1st semester course include breaking (unsalted) hash of
a 7-character random password.

I Some students typically manage to do that in a week!

OS Security � Authentication and Authorization 11

Weak passwords

I Largest problem with passwords: weak passwords

I Remember 1987 Mel Brooks movie �Spaceballs� . . . ?

I Most common passwords in 2014 (SplashData list):
I Place 3: 12345
I Place 2: password
I Place 1: 123456

I Exercises in 1st semester course include breaking (unsalted) hash of
a 7-character random password.

I Some students typically manage to do that in a week!

OS Security � Authentication and Authorization 11

Authentication by �what you have�

I Very common in the �physical world�, e.g., keys

I Digital world: Smart cards, USB tokens

I Private keys (e.g., for SSH)

I Can easily combine with password, e.g. on SSH private keys

Attacks and countermeasures

I Stealing (or �nding): Protect possession

I Copying: Tamper-proof hardware, holograms, anti-counterfeiting
techniques

I Replay attack: device-dependent, use challenge-response

OS Security � Authentication and Authorization 12

Authentication by �what you have�

I Very common in the �physical world�, e.g., keys

I Digital world: Smart cards, USB tokens

I Private keys (e.g., for SSH)

I Can easily combine with password, e.g. on SSH private keys

Attacks and countermeasures

I Stealing (or �nding): Protect possession

I Copying: Tamper-proof hardware, holograms, anti-counterfeiting
techniques

I Replay attack: device-dependent, use challenge-response

OS Security � Authentication and Authorization 12

Authentication by �what you have�

I Very common in the �physical world�, e.g., keys

I Digital world: Smart cards, USB tokens

I Private keys (e.g., for SSH)

I Can easily combine with password, e.g. on SSH private keys

Attacks and countermeasures

I Stealing (or �nding): Protect possession

I Copying: Tamper-proof hardware, holograms, anti-counterfeiting
techniques

I Replay attack: device-dependent, use challenge-response

OS Security � Authentication and Authorization 12

Authentication by �what you have�

I Very common in the �physical world�, e.g., keys

I Digital world: Smart cards, USB tokens

I Private keys (e.g., for SSH)

I Can easily combine with password, e.g. on SSH private keys

Attacks and countermeasures

I Stealing (or �nding): Protect possession

I Copying: Tamper-proof hardware, holograms, anti-counterfeiting
techniques

I Replay attack: device-dependent, use challenge-response

OS Security � Authentication and Authorization 12

Authentication by �what you have�

I Very common in the �physical world�, e.g., keys

I Digital world: Smart cards, USB tokens

I Private keys (e.g., for SSH)

I Can easily combine with password, e.g. on SSH private keys

Attacks and countermeasures

I Stealing (or �nding): Protect possession

I Copying: Tamper-proof hardware, holograms, anti-counterfeiting
techniques

I Replay attack: device-dependent, use challenge-response

OS Security � Authentication and Authorization 12

Authentication by �what you are�

I Fingerprint (fake �ngerprint, cut o� �nger)
http://www.heise.de/video/artikel/

iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans

I Voice match (distorted by cold, defeated by recordings)

I Handwriting (low accuracy, easy to fake)

I Keystroking, timing of keystrokes

When a password is compromised, change your password. What if
your �ngerprint is compromised?

OS Security � Authentication and Authorization 13

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Authentication by �what you are�

I Fingerprint (fake �ngerprint, cut o� �nger)
http://www.heise.de/video/artikel/

iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans

I Voice match (distorted by cold, defeated by recordings)

I Handwriting (low accuracy, easy to fake)

I Keystroking, timing of keystrokes

When a password is compromised, change your password. What if
your �ngerprint is compromised?

OS Security � Authentication and Authorization 13

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Authentication by �what you are�

I Fingerprint (fake �ngerprint, cut o� �nger)
http://www.heise.de/video/artikel/

iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans

I Voice match (distorted by cold, defeated by recordings)

I Handwriting (low accuracy, easy to fake)

I Keystroking, timing of keystrokes

When a password is compromised, change your password. What if
your �ngerprint is compromised?

OS Security � Authentication and Authorization 13

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Authentication by �what you are�

I Fingerprint (fake �ngerprint, cut o� �nger)
http://www.heise.de/video/artikel/

iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans

I Voice match (distorted by cold, defeated by recordings)

I Handwriting (low accuracy, easy to fake)

I Keystroking, timing of keystrokes

When a password is compromised, change your password. What if
your �ngerprint is compromised?

OS Security � Authentication and Authorization 13

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Authentication by �what you are�

I Fingerprint (fake �ngerprint, cut o� �nger)
http://www.heise.de/video/artikel/

iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans

I Voice match (distorted by cold, defeated by recordings)

I Handwriting (low accuracy, easy to fake)

I Keystroking, timing of keystrokes

When a password is compromised, change your password. What if
your �ngerprint is compromised?

OS Security � Authentication and Authorization 13

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Authentication by �what you are�

I Fingerprint (fake �ngerprint, cut o� �nger)
http://www.heise.de/video/artikel/

iPhone-5s-Touch-ID-hack-in-detail-1966044.html

I Retina scans

I Voice match (distorted by cold, defeated by recordings)

I Handwriting (low accuracy, easy to fake)

I Keystroking, timing of keystrokes

When a password is compromised, change your password. What if
your �ngerprint is compromised?

OS Security � Authentication and Authorization 13

http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html
http://www.heise.de/video/artikel/iPhone-5s-Touch-ID-hack-in-detail-1966044.html

Compromising �ngerprints. . .

OS Security � Authentication and Authorization 14

Pluggable authentication modules

I Local login is not the only program that needs user authentication:
I SSH (remote login)
I Graphical login (GDM, LightDM)
I Screen locks (screensaver)
I su and sudo (more next lecture)

I Idea: Centralize authentication, make functionality available through
library

I This is handled by Pluggable Authentication Modules (PAM)

I Add a new module (e.g., for �ngerprint authentication), directly
available to all PAM enabled programs

OS Security � Authentication and Authorization 15

Pluggable authentication modules

I Local login is not the only program that needs user authentication:
I SSH (remote login)
I Graphical login (GDM, LightDM)
I Screen locks (screensaver)
I su and sudo (more next lecture)

I Idea: Centralize authentication, make functionality available through
library

I This is handled by Pluggable Authentication Modules (PAM)

I Add a new module (e.g., for �ngerprint authentication), directly
available to all PAM enabled programs

OS Security � Authentication and Authorization 15

Pluggable authentication modules

I Local login is not the only program that needs user authentication:
I SSH (remote login)
I Graphical login (GDM, LightDM)
I Screen locks (screensaver)
I su and sudo (more next lecture)

I Idea: Centralize authentication, make functionality available through
library

I This is handled by Pluggable Authentication Modules (PAM)

I Add a new module (e.g., for �ngerprint authentication), directly
available to all PAM enabled programs

OS Security � Authentication and Authorization 15

PAM design

Image from http://www.tuxradar.com/content/how-pam-works

OS Security � Authentication and Authorization 16

http://www.tuxradar.com/content/how-pam-works

PAM activities

PAM knows 4 di�erent authentication-related activities:

I auth: The activity of user authentication; typically by password, but
can also use tokens, �ngerprints etc.

I account: After a user is identi�ed, decide whether he is allowed to
log in. For example, can restrict login times.

I session: Allocates resources, for example mount home directory, set
resource usage limits, print greeting message with information.

I password: Update the user's credentials (typically the password)

OS Security � Authentication and Authorization 17

PAM con�guration syntax

Con�guration for program progname is in /etc/pam.d/progname

PAM control �ags

I requisite: if module fails, immediately return failure and stop

I required: if module fails, return failure but continue

I su�cient: if module passes, return pass and stop

I optional: pass/fail result is ignored

Image source: http://www.tuxradar.com/content/how-pam-works

OS Security � Authentication and Authorization 18

http://www.tuxradar.com/content/how-pam-works

PAM con�guration syntax

Con�guration for program progname is in /etc/pam.d/progname

PAM control �ags

I requisite: if module fails, immediately return failure and stop

I required: if module fails, return failure but continue

I su�cient: if module passes, return pass and stop

I optional: pass/fail result is ignored

Image source: http://www.tuxradar.com/content/how-pam-works

OS Security � Authentication and Authorization 18

http://www.tuxradar.com/content/how-pam-works

Examples of PAM modules

Name Activities Description
pam_unix auth, session,

password
Standard UNIX authentication through
/etc/shadow passwords

pam_permit auth, account,
session, pass-
word

Always returns true

pam_deny auth, account,
session, pass-
word

Always returns false

pam_rootok auth Returns true i� you're root
pam_warn auth, account,

session, pass-
word

Write a log message to the system log

pam_cracklib password Perform checks of the password strength

OS Security � Authentication and Authorization 19

Some PAM con�g examples

I Prevent all users from using su (/etc/pam.d/su)

auth requisite pam_deny.so

I Prevent non-root users to halt (/etc/pam.d/halt)

auth sufficient pam_rootok.so

auth required pam_deny.so

I Enforce passwords with at least 10 characters and at least 2 special
characters, use SHA-512 for password hash (/etc/pam.d/passwd):

password required pam_cracklib.so minlen=10 ocredit=-2

password required pam_unix.so sha512

OS Security � Authentication and Authorization 20

Some PAM con�g examples

I Prevent all users from using su (/etc/pam.d/su)

auth requisite pam_deny.so

I Prevent non-root users to halt (/etc/pam.d/halt)

auth sufficient pam_rootok.so

auth required pam_deny.so

I Enforce passwords with at least 10 characters and at least 2 special
characters, use SHA-512 for password hash (/etc/pam.d/passwd):

password required pam_cracklib.so minlen=10 ocredit=-2

password required pam_unix.so sha512

OS Security � Authentication and Authorization 20

Some PAM con�g examples

I Prevent all users from using su (/etc/pam.d/su)

auth requisite pam_deny.so

I Prevent non-root users to halt (/etc/pam.d/halt)

auth sufficient pam_rootok.so

auth required pam_deny.so

I Enforce passwords with at least 10 characters and at least 2 special
characters, use SHA-512 for password hash (/etc/pam.d/passwd):

password required pam_cracklib.so minlen=10 ocredit=-2

password required pam_unix.so sha512

OS Security � Authentication and Authorization 20

Authentication over the network

I Large corporate networks want to keep user information central

I User is added to one central directory, can log into any machine

I Various �simple� ways to set up the protocol:
I Client sends password, server hashes and compares
I Client sends hash, server compares
I Server sends hash, client compares

I Also more complex ways, e.g., challenge-response

I Possible disadvantage of central login server: single point of failure

I Di�erent common protocols (NIS, LDAP, Kerberos)

OS Security � Authentication and Authorization 21

Authentication over the network

I Large corporate networks want to keep user information central

I User is added to one central directory, can log into any machine

I Various �simple� ways to set up the protocol:
I Client sends password, server hashes and compares
I Client sends hash, server compares
I Server sends hash, client compares

I Also more complex ways, e.g., challenge-response

I Possible disadvantage of central login server: single point of failure

I Di�erent common protocols (NIS, LDAP, Kerberos)

OS Security � Authentication and Authorization 21

Authentication over the network

I Large corporate networks want to keep user information central

I User is added to one central directory, can log into any machine

I Various �simple� ways to set up the protocol:
I Client sends password, server hashes and compares
I Client sends hash, server compares
I Server sends hash, client compares

I Also more complex ways, e.g., challenge-response

I Possible disadvantage of central login server: single point of failure

I Di�erent common protocols (NIS, LDAP, Kerberos)

OS Security � Authentication and Authorization 21

Authentication over the network

I Large corporate networks want to keep user information central

I User is added to one central directory, can log into any machine

I Various �simple� ways to set up the protocol:
I Client sends password, server hashes and compares
I Client sends hash, server compares
I Server sends hash, client compares

I Also more complex ways, e.g., challenge-response

I Possible disadvantage of central login server: single point of failure

I Di�erent common protocols (NIS, LDAP, Kerberos)

OS Security � Authentication and Authorization 21

Authentication over the network

I Large corporate networks want to keep user information central

I User is added to one central directory, can log into any machine

I Various �simple� ways to set up the protocol:
I Client sends password, server hashes and compares
I Client sends hash, server compares
I Server sends hash, client compares

I Also more complex ways, e.g., challenge-response

I Possible disadvantage of central login server: single point of failure

I Di�erent common protocols (NIS, LDAP, Kerberos)

OS Security � Authentication and Authorization 21

NTLM and �pass the hash�

I Microsoft's LM and NTLM network authentication can send hash
from the client, server compares hashes

I Attacker only needs to obtain the password hash

I The whole point of storing password hashes is gone

I Essentially, the hash becomes the password

I This attack is known as �pass the hash� attack

I Conveniently automated in metasploit

I Almost any larger Windows network still has NTLM somewhere

OS Security � Authentication and Authorization 22

NTLM and �pass the hash�

I Microsoft's LM and NTLM network authentication can send hash
from the client, server compares hashes

I Attacker only needs to obtain the password hash

I The whole point of storing password hashes is gone

I Essentially, the hash becomes the password

I This attack is known as �pass the hash� attack

I Conveniently automated in metasploit

I Almost any larger Windows network still has NTLM somewhere

OS Security � Authentication and Authorization 22

NTLM and �pass the hash�

I Microsoft's LM and NTLM network authentication can send hash
from the client, server compares hashes

I Attacker only needs to obtain the password hash

I The whole point of storing password hashes is gone

I Essentially, the hash becomes the password

I This attack is known as �pass the hash� attack

I Conveniently automated in metasploit

I Almost any larger Windows network still has NTLM somewhere

OS Security � Authentication and Authorization 22

NTLM and �pass the hash�

I Microsoft's LM and NTLM network authentication can send hash
from the client, server compares hashes

I Attacker only needs to obtain the password hash

I The whole point of storing password hashes is gone

I Essentially, the hash becomes the password

I This attack is known as �pass the hash� attack

I Conveniently automated in metasploit

I Almost any larger Windows network still has NTLM somewhere

OS Security � Authentication and Authorization 22

Part II

Authorization

Protection rings

I OS needs to control access to
resources

I Idea: Access to resources only
for highly-privileged code

I Non-privileged code needs to
ask the OS to perform
operations on resources

I Separate code in protection
rings

I Ring 0: OS kernel

I Outer rings: less privileged
software (drivers, userspace
programs)

Image source: http://en.wikipedia.

org/wiki/Protection_ring

OS Security � Authentication and Authorization 24

http://en.wikipedia.org/wiki/Protection_ring
http://en.wikipedia.org/wiki/Protection_ring

Protection rings

I OS needs to control access to
resources

I Idea: Access to resources only
for highly-privileged code

I Non-privileged code needs to
ask the OS to perform
operations on resources

I Separate code in protection
rings

I Ring 0: OS kernel

I Outer rings: less privileged
software (drivers, userspace
programs)

Image source: http://en.wikipedia.

org/wiki/Protection_ring

OS Security � Authentication and Authorization 24

http://en.wikipedia.org/wiki/Protection_ring
http://en.wikipedia.org/wiki/Protection_ring

Protection rings in Linux

I Protection rings are supported by hardware

I Certain instructions can only be executed by privileged (ring-0) code

I X86 and AMD64 support 4 di�erent rings (ring 0�3)

I Trying to execute a ring-0 instruction from ring-3 results in SIGILL
(illegal instruction)

I Idea:
I OS kernel (memory and process management) run in ring 0
I Device drivers run in ring 1 and 2
I Userspace software runs in ring 3

I Linux (and Windows) use a simpler supervisor-mode model:
I Operating system runs with supervisor �ag enabled (ring 0)
I Userspace programs run with supervisor �ag disabled (ring 3)

I Call ring-0 code kernel space
I Call ring-3 code user space

OS Security � Authentication and Authorization 25

Protection rings in Linux

I Protection rings are supported by hardware

I Certain instructions can only be executed by privileged (ring-0) code

I X86 and AMD64 support 4 di�erent rings (ring 0�3)

I Trying to execute a ring-0 instruction from ring-3 results in SIGILL
(illegal instruction)

I Idea:
I OS kernel (memory and process management) run in ring 0
I Device drivers run in ring 1 and 2
I Userspace software runs in ring 3

I Linux (and Windows) use a simpler supervisor-mode model:
I Operating system runs with supervisor �ag enabled (ring 0)
I Userspace programs run with supervisor �ag disabled (ring 3)

I Call ring-0 code kernel space
I Call ring-3 code user space

OS Security � Authentication and Authorization 25

Protection rings in Linux

I Protection rings are supported by hardware

I Certain instructions can only be executed by privileged (ring-0) code

I X86 and AMD64 support 4 di�erent rings (ring 0�3)

I Trying to execute a ring-0 instruction from ring-3 results in SIGILL
(illegal instruction)

I Idea:
I OS kernel (memory and process management) run in ring 0
I Device drivers run in ring 1 and 2
I Userspace software runs in ring 3

I Linux (and Windows) use a simpler supervisor-mode model:
I Operating system runs with supervisor �ag enabled (ring 0)
I Userspace programs run with supervisor �ag disabled (ring 3)
I Call ring-0 code kernel space
I Call ring-3 code user space

OS Security � Authentication and Authorization 25

System calls and strace

I Transition from user space to kernel space through well-de�ned
interface

I Interface is a set of system calls (syscalls)

I A system call is a request from user space to the OS to perform a
certain operation

I Access to system calls is typically implemented through the standard
library

I Examples:
I write function de�ned in unistd.h is wrapper around write syscall
I execve function de�ned in unistd.h is wrapper around execve

syscall

I Sometimes don't use system calls that directly, e.g., printf also
calls write

I Can print (trace) all syscalls of a program: strace

I Very helpful for understanding what's happening �behind the scenes�

OS Security � Authentication and Authorization 26

System calls and strace

I Transition from user space to kernel space through well-de�ned
interface

I Interface is a set of system calls (syscalls)

I A system call is a request from user space to the OS to perform a
certain operation

I Access to system calls is typically implemented through the standard
library

I Examples:
I write function de�ned in unistd.h is wrapper around write syscall
I execve function de�ned in unistd.h is wrapper around execve

syscall

I Sometimes don't use system calls that directly, e.g., printf also
calls write

I Can print (trace) all syscalls of a program: strace

I Very helpful for understanding what's happening �behind the scenes�

OS Security � Authentication and Authorization 26

System calls and strace

I Transition from user space to kernel space through well-de�ned
interface

I Interface is a set of system calls (syscalls)

I A system call is a request from user space to the OS to perform a
certain operation

I Access to system calls is typically implemented through the standard
library

I Examples:
I write function de�ned in unistd.h is wrapper around write syscall
I execve function de�ned in unistd.h is wrapper around execve

syscall

I Sometimes don't use system calls that directly, e.g., printf also
calls write

I Can print (trace) all syscalls of a program: strace

I Very helpful for understanding what's happening �behind the scenes�

OS Security � Authentication and Authorization 26

System calls and strace

I Transition from user space to kernel space through well-de�ned
interface

I Interface is a set of system calls (syscalls)

I A system call is a request from user space to the OS to perform a
certain operation

I Access to system calls is typically implemented through the standard
library

I Examples:
I write function de�ned in unistd.h is wrapper around write syscall
I execve function de�ned in unistd.h is wrapper around execve

syscall

I Sometimes don't use system calls that directly, e.g., printf also
calls write

I Can print (trace) all syscalls of a program: strace

I Very helpful for understanding what's happening �behind the scenes�

OS Security � Authentication and Authorization 26

Applications and the OS

OS Security � Authentication and Authorization 27

Kernel modules

I Processes belonging to root can do anything

in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

Kernel modules

I Processes belonging to root can do anything in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

Kernel modules

I Processes belonging to root can do anything in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

Kernel modules

I Processes belonging to root can do anything in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

Kernel modules

I Processes belonging to root can do anything in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

Kernel modules

I Processes belonging to root can do anything in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

Kernel modules

I Processes belonging to root can do anything in userspace

I root processes do not run in kernel space

I root processes need syscalls to access resources

I What if there is no syscall for a certain operation?

I Example: enable userspace access to hardware cycle counter on
ARM processors

I Answer: Modify OS kernel (add syscall), reboot

I Better answer: Modify OS kernel at runtime

I Linux kernel typically allows to load kernel modules

I Modules run in kernel space (ring 0)

I Load module into kernel with program insmod

OS Security � Authentication and Authorization 28

A kernel module example

#include <linux/module.h>

#include <linux/kernel.h>

MODULE_LICENSE("Dual BSD/GPL");

#define DEVICE_NAME "enableccnt"

static int enableccnt_init(void)

{

printk(KERN_INFO DEVICE_NAME " starting\n");

asm volatile("mcr p15, 0, %0, c9, c14, 0" :: "r"(1));

return 0;

}

static void enableccnt_exit(void)

{

asm volatile("mcr p15, 0, %0, c9, c14, 0" :: "r"(0));

printk(KERN_INFO DEVICE_NAME " stopping\n");

}

module_init(enableccnt_init);

module_exit(enableccnt_exit);
OS Security � Authentication and Authorization 29

Files

I Persistent data on background storage is organized in �les

I Files are logical units of information organized by a �le system

I Files have names and additional associated information:
I Date and time of last access
I Date and time of last modi�cation
I Access-permission-related information

I Files are logically organized in a tree hierarchy of directories

I The �le system maps logical information to bits and bytes on the
storage device

I The �le system runs in kernel space (typically through device drivers)

I Access to �les goes through system calls

OS Security � Authentication and Authorization 30

Files

I Persistent data on background storage is organized in �les

I Files are logical units of information organized by a �le system

I Files have names and additional associated information:
I Date and time of last access
I Date and time of last modi�cation
I Access-permission-related information

I Files are logically organized in a tree hierarchy of directories

I The �le system maps logical information to bits and bytes on the
storage device

I The �le system runs in kernel space (typically through device drivers)

I Access to �les goes through system calls

OS Security � Authentication and Authorization 30

�Everything is a �le�

I Design principle of UNIX (and Linux): every persistent resource is
accessed through a �le handle

I A �le handle is an integer, which is mapped to a resource

I Mapping is established per process in a kernel-managed
�le-descriptor table

I Special �le handles for (almost) every process:
Integer value Name/Meaning <stdio.h> �le stream

0 Standard input stdin
1 Standard output stdout
2 Standard error stderr

I Consequence of �everything is a �le�:
I User-space processes can operate on �les only through syscalls
I OS can check for each syscall (kernel-space operation), whether the

operation is permitted

I (User-space programs also operate on memory, but that's for next
lecture)

OS Security � Authentication and Authorization 31

�Everything is a �le�

I Design principle of UNIX (and Linux): every persistent resource is
accessed through a �le handle

I A �le handle is an integer, which is mapped to a resource

I Mapping is established per process in a kernel-managed
�le-descriptor table

I Special �le handles for (almost) every process:
Integer value Name/Meaning <stdio.h> �le stream

0 Standard input stdin
1 Standard output stdout
2 Standard error stderr

I Consequence of �everything is a �le�:
I User-space processes can operate on �les only through syscalls
I OS can check for each syscall (kernel-space operation), whether the

operation is permitted

I (User-space programs also operate on memory, but that's for next
lecture)

OS Security � Authentication and Authorization 31

�Everything is a �le�

I Design principle of UNIX (and Linux): every persistent resource is
accessed through a �le handle

I A �le handle is an integer, which is mapped to a resource

I Mapping is established per process in a kernel-managed
�le-descriptor table

I Special �le handles for (almost) every process:
Integer value Name/Meaning <stdio.h> �le stream

0 Standard input stdin
1 Standard output stdout
2 Standard error stderr

I Consequence of �everything is a �le�:
I User-space processes can operate on �les only through syscalls
I OS can check for each syscall (kernel-space operation), whether the

operation is permitted

I (User-space programs also operate on memory, but that's for next
lecture)

OS Security � Authentication and Authorization 31

�Everything is a �le�

I Design principle of UNIX (and Linux): every persistent resource is
accessed through a �le handle

I A �le handle is an integer, which is mapped to a resource

I Mapping is established per process in a kernel-managed
�le-descriptor table

I Special �le handles for (almost) every process:
Integer value Name/Meaning <stdio.h> �le stream

0 Standard input stdin
1 Standard output stdout
2 Standard error stderr

I Consequence of �everything is a �le�:
I User-space processes can operate on �les only through syscalls
I OS can check for each syscall (kernel-space operation), whether the

operation is permitted
I (User-space programs also operate on memory, but that's for next

lecture)

OS Security � Authentication and Authorization 31

File-related syscalls

I open(): Open a �le and return a �le handle

I read(): Read a number of bytes from a �le handle into a bu�er

I write(): Write a number of bytes from a bu�er to the �le handle

I close(): Close the �le handle

I lseek(): Change position in the �le handle

I access(): Check access rights based on real user ID (more later)

OS Security � Authentication and Authorization 32

File-related syscalls

I open(): Open a �le and return a �le handle

I read(): Read a number of bytes from a �le handle into a bu�er

I write(): Write a number of bytes from a bu�er to the �le handle

I close(): Close the �le handle

I lseek(): Change position in the �le handle

I access(): Check access rights based on real user ID (more later)

OS Security � Authentication and Authorization 32

File-related syscalls

I open(): Open a �le and return a �le handle

I read(): Read a number of bytes from a �le handle into a bu�er

I write(): Write a number of bytes from a bu�er to the �le handle

I close(): Close the �le handle

I lseek(): Change position in the �le handle

I access(): Check access rights based on real user ID (more later)

OS Security � Authentication and Authorization 32

File-related syscalls

I open(): Open a �le and return a �le handle

I read(): Read a number of bytes from a �le handle into a bu�er

I write(): Write a number of bytes from a bu�er to the �le handle

I close(): Close the �le handle

I lseek(): Change position in the �le handle

I access(): Check access rights based on real user ID (more later)

OS Security � Authentication and Authorization 32

File-related syscalls

I open(): Open a �le and return a �le handle

I read(): Read a number of bytes from a �le handle into a bu�er

I write(): Write a number of bytes from a bu�er to the �le handle

I close(): Close the �le handle

I lseek(): Change position in the �le handle

I access(): Check access rights based on real user ID (more later)

OS Security � Authentication and Authorization 32

File-related syscalls

I open(): Open a �le and return a �le handle

I read(): Read a number of bytes from a �le handle into a bu�er

I write(): Write a number of bytes from a bu�er to the �le handle

I close(): Close the �le handle

I lseek(): Change position in the �le handle

I access(): Check access rights based on real user ID (more later)

OS Security � Authentication and Authorization 32

Pseudo �lesystems proc and sys

I Files in /proc and /sys are �pseudo-�les�

I Those �les provide reading or writing access to OS parameters

I Examples:
I cat /proc/cpuinfo: Shows all kind of information about the CPUs

of the system
I cat /proc/meminfo: Shows all kind of information about the

memory of the system

I echo 1 > /proc/sys/net/ipv4/ip_forward: Enable IP forwarding
I echo powersave > /sys/.../cpu0/cpufreq/scaling_governor:

Switch CPU0 to �powersave� mode

I Important for access control: reading/writing those parameters is
implemented through operations on (pseudo-)�les

OS Security � Authentication and Authorization 33

Pseudo �lesystems proc and sys

I Files in /proc and /sys are �pseudo-�les�

I Those �les provide reading or writing access to OS parameters

I Examples:
I cat /proc/cpuinfo: Shows all kind of information about the CPUs

of the system
I cat /proc/meminfo: Shows all kind of information about the

memory of the system

I echo 1 > /proc/sys/net/ipv4/ip_forward: Enable IP forwarding
I echo powersave > /sys/.../cpu0/cpufreq/scaling_governor:

Switch CPU0 to �powersave� mode

I Important for access control: reading/writing those parameters is
implemented through operations on (pseudo-)�les

OS Security � Authentication and Authorization 33

Pseudo �lesystems proc and sys

I Files in /proc and /sys are �pseudo-�les�

I Those �les provide reading or writing access to OS parameters

I Examples:
I cat /proc/cpuinfo: Shows all kind of information about the CPUs

of the system
I cat /proc/meminfo: Shows all kind of information about the

memory of the system
I echo 1 > /proc/sys/net/ipv4/ip_forward: Enable IP forwarding
I echo powersave > /sys/.../cpu0/cpufreq/scaling_governor:

Switch CPU0 to �powersave� mode

I Important for access control: reading/writing those parameters is
implemented through operations on (pseudo-)�les

OS Security � Authentication and Authorization 33

Pseudo �lesystems proc and sys

I Files in /proc and /sys are �pseudo-�les�

I Those �les provide reading or writing access to OS parameters

I Examples:
I cat /proc/cpuinfo: Shows all kind of information about the CPUs

of the system
I cat /proc/meminfo: Shows all kind of information about the

memory of the system
I echo 1 > /proc/sys/net/ipv4/ip_forward: Enable IP forwarding
I echo powersave > /sys/.../cpu0/cpufreq/scaling_governor:

Switch CPU0 to �powersave� mode

I Important for access control: reading/writing those parameters is
implemented through operations on (pseudo-)�les

OS Security � Authentication and Authorization 33

Device �les

I Hardware devices are represented as �les in /dev/

I Examples:
I /dev/sda: First hard drive
I /dev/sda1: First partition on �rst hard drive
I /dev/tty*: Serial devices and terminals
I /dev/input/*: Input devices
I /dev/zero: Pseudo-devices that prints zeros
I /dev/random: Pseudo-devices that prints random bytes

I Generally be very careful when writing to device �les

I dd if=/dev/zero of=/dev/sda overwrites your whole hard drive
with zeros

I Again, important for access control: accessing (hardware) devices is
implemented through operations on (device-)�les

OS Security � Authentication and Authorization 34

Device �les

I Hardware devices are represented as �les in /dev/

I Examples:
I /dev/sda: First hard drive
I /dev/sda1: First partition on �rst hard drive
I /dev/tty*: Serial devices and terminals
I /dev/input/*: Input devices
I /dev/zero: Pseudo-devices that prints zeros
I /dev/random: Pseudo-devices that prints random bytes

I Generally be very careful when writing to device �les

I dd if=/dev/zero of=/dev/sda overwrites your whole hard drive
with zeros

I Again, important for access control: accessing (hardware) devices is
implemented through operations on (device-)�les

OS Security � Authentication and Authorization 34

Device �les

I Hardware devices are represented as �les in /dev/

I Examples:
I /dev/sda: First hard drive
I /dev/sda1: First partition on �rst hard drive
I /dev/tty*: Serial devices and terminals
I /dev/input/*: Input devices
I /dev/zero: Pseudo-devices that prints zeros
I /dev/random: Pseudo-devices that prints random bytes

I Generally be very careful when writing to device �les

I dd if=/dev/zero of=/dev/sda overwrites your whole hard drive
with zeros

I Again, important for access control: accessing (hardware) devices is
implemented through operations on (device-)�les

OS Security � Authentication and Authorization 34

Symbolic links and pipes

I A symbolic link is a special �le that �links� to another �le

I Accessing a symbolic link really accesses the �le it points to

I Create a symbolic link to /home/peter/teaching/ with name
/home/peter/ru:

ln -s /home/peter/teaching /home/peter/ru

I Can also create a hard link:

ln /home/peter/teaching /home/peter/ru

I Soft links don't get updated when the target is moved

I Hard links always point to the target

I Access is again handled through �le handles, need to be careful with
permissions

I Pipes for inter-process communication are also implemented through
�le handles

OS Security � Authentication and Authorization 35

Symbolic links and pipes

I A symbolic link is a special �le that �links� to another �le

I Accessing a symbolic link really accesses the �le it points to

I Create a symbolic link to /home/peter/teaching/ with name
/home/peter/ru:

ln -s /home/peter/teaching /home/peter/ru

I Can also create a hard link:

ln /home/peter/teaching /home/peter/ru

I Soft links don't get updated when the target is moved

I Hard links always point to the target

I Access is again handled through �le handles, need to be careful with
permissions

I Pipes for inter-process communication are also implemented through
�le handles

OS Security � Authentication and Authorization 35

Symbolic links and pipes

I A symbolic link is a special �le that �links� to another �le

I Accessing a symbolic link really accesses the �le it points to

I Create a symbolic link to /home/peter/teaching/ with name
/home/peter/ru:

ln -s /home/peter/teaching /home/peter/ru

I Can also create a hard link:

ln /home/peter/teaching /home/peter/ru

I Soft links don't get updated when the target is moved

I Hard links always point to the target

I Access is again handled through �le handles, need to be careful with
permissions

I Pipes for inter-process communication are also implemented through
�le handles

OS Security � Authentication and Authorization 35

Symbolic links and pipes

I A symbolic link is a special �le that �links� to another �le

I Accessing a symbolic link really accesses the �le it points to

I Create a symbolic link to /home/peter/teaching/ with name
/home/peter/ru:

ln -s /home/peter/teaching /home/peter/ru

I Can also create a hard link:

ln /home/peter/teaching /home/peter/ru

I Soft links don't get updated when the target is moved

I Hard links always point to the target

I Access is again handled through �le handles, need to be careful with
permissions

I Pipes for inter-process communication are also implemented through
�le handles

OS Security � Authentication and Authorization 35

Environment variables

I One might think that data �ow between processes can only happen
through �les

I Process A writes a �le, process B reads the �le

I Other way of communicating: environment variables

I Process A can set an environment variable, process B can read it

I Set an environment variable through

export MYVAR=myvalue

I Show all currently de�ned environment variables: export

I Important system-wide variables:
I PATH: colon-separated list of directories to search for programs
I LD_LIBRARY_PATH: colon-separated list of directories to search for

libraries

OS Security � Authentication and Authorization 36

Environment variables

I One might think that data �ow between processes can only happen
through �les

I Process A writes a �le, process B reads the �le

I Other way of communicating: environment variables

I Process A can set an environment variable, process B can read it

I Set an environment variable through

export MYVAR=myvalue

I Show all currently de�ned environment variables: export

I Important system-wide variables:
I PATH: colon-separated list of directories to search for programs
I LD_LIBRARY_PATH: colon-separated list of directories to search for

libraries

OS Security � Authentication and Authorization 36

Environment variables

I One might think that data �ow between processes can only happen
through �les

I Process A writes a �le, process B reads the �le

I Other way of communicating: environment variables

I Process A can set an environment variable, process B can read it

I Set an environment variable through

export MYVAR=myvalue

I Show all currently de�ned environment variables: export

I Important system-wide variables:
I PATH: colon-separated list of directories to search for programs
I LD_LIBRARY_PATH: colon-separated list of directories to search for

libraries

OS Security � Authentication and Authorization 36

Environment variables

I One might think that data �ow between processes can only happen
through �les

I Process A writes a �le, process B reads the �le

I Other way of communicating: environment variables

I Process A can set an environment variable, process B can read it

I Set an environment variable through

export MYVAR=myvalue

I Show all currently de�ned environment variables: export

I Important system-wide variables:
I PATH: colon-separated list of directories to search for programs
I LD_LIBRARY_PATH: colon-separated list of directories to search for

libraries

OS Security � Authentication and Authorization 36

MAC and DAC

Protection system
A protection system consists of a protection state, which describes what
operations subjects (processes) may perform on objects (�les) together
with a set of protection state operations that enable modi�cation of the
state.

Mandatory Access Control
A system implements mandatory access control (MAC) if the protection
state can only be modi�ed by trusted administrators via trusted software.

Discretionary Access Control
A system implements discretionary access control (DAC) if the protection
state can be modi�ed by untrusted users. The protection of a user's �les
is then �at the discretion of the user�.

OS Security � Authentication and Authorization 37

MAC and DAC

Protection system
A protection system consists of a protection state, which describes what
operations subjects (processes) may perform on objects (�les) together
with a set of protection state operations that enable modi�cation of the
state.

Mandatory Access Control
A system implements mandatory access control (MAC) if the protection
state can only be modi�ed by trusted administrators via trusted software.

Discretionary Access Control
A system implements discretionary access control (DAC) if the protection
state can be modi�ed by untrusted users. The protection of a user's �les
is then �at the discretion of the user�.

OS Security � Authentication and Authorization 37

MAC and DAC

Protection system
A protection system consists of a protection state, which describes what
operations subjects (processes) may perform on objects (�les) together
with a set of protection state operations that enable modi�cation of the
state.

Mandatory Access Control
A system implements mandatory access control (MAC) if the protection
state can only be modi�ed by trusted administrators via trusted software.

Discretionary Access Control
A system implements discretionary access control (DAC) if the protection
state can be modi�ed by untrusted users. The protection of a user's �les
is then �at the discretion of the user�.

OS Security � Authentication and Authorization 37

Access Matrix

An access matrix is a set of subjects S, a set of objects O, a set of
operations X and a function op : S ×O → P(X). Given s ∈ S and
o ∈ O, the function op returns the set of operations that s is allowed to
perform on o.

OS Security � Authentication and Authorization 38

Access Matrix

File 1 File 2 File 3 File 4
Process 1 read read read,write
Process 2 read
Process 3 read,write read

I When a user creates a �le, she adds a column to the table

I Adding a column means modifying the protection state

I The access-matrix model leads to a DAC system

OS Security � Authentication and Authorization 38

Access Matrix

File 1 File 2 File 3 File 4
Process 1 read read read,write
Process 2 read
Process 3 read,write read

I When a user creates a �le, she adds a column to the table

I Adding a column means modifying the protection state

I The access-matrix model leads to a DAC system

OS Security � Authentication and Authorization 38

UNIX/Linux protection model

I Trusted code base (TCB) of Linux is all code running in kernel space
and several processes running with root permissions, e.g.:

I init process
I login (user authentication)
I network services

I Goal: protect users' processes from each other and the TCB from all
user processes

OS Security � Authentication and Authorization 39

UNIX/Linux protection model: subjects

I Each process has associated three user IDs:
I Real user ID
I E�ective user ID
I Saved user ID

I Each process also has associated a set of group IDs

I The groups of all users are de�ned in /etc/group

I Each user has a primary group de�ned in /etc/passwd

I When you are logged in, you can see your groups with the command
groups

OS Security � Authentication and Authorization 40

UNIX/Linux protection model: subjects

I Each process has associated three user IDs:
I Real user ID
I E�ective user ID
I Saved user ID

I Each process also has associated a set of group IDs

I The groups of all users are de�ned in /etc/group

I Each user has a primary group de�ned in /etc/passwd

I When you are logged in, you can see your groups with the command
groups

OS Security � Authentication and Authorization 40

UNIX/Linux protection model: objects

I Each object (�le) has
I an owner (user) and owner permissions
I a group and group permissions
I other permissions

I Permissions on a �le are read (r), write (w) and execute (x)

I Typically write permissions as 9 bits: rwx︸︷︷︸
owner

rwx︸︷︷︸
group

rwx︸︷︷︸
other

I Convenient way of writing this: 3 numbers from 0�7, e.g.:
I 750: owner may read, write, and execute; group may read and

execute, others may nothing
I 644: owner may read and write; group and others may read

I Command ls -l shows �les with corresponding permissions, e.g.

peter@tyrion:/etc$ ls -l passwd shadow

-rw-r--r-- 1 root root 2217 Nov 16 18:13 passwd

-rw-r----- 1 root shadow 1454 Nov 16 18:13 shadow

OS Security � Authentication and Authorization 41

UNIX/Linux protection model: objects

I Each object (�le) has
I an owner (user) and owner permissions
I a group and group permissions
I other permissions

I Permissions on a �le are read (r), write (w) and execute (x)

I Typically write permissions as 9 bits: rwx︸︷︷︸
owner

rwx︸︷︷︸
group

rwx︸︷︷︸
other

I Convenient way of writing this: 3 numbers from 0�7, e.g.:
I 750: owner may read, write, and execute; group may read and

execute, others may nothing
I 644: owner may read and write; group and others may read

I Command ls -l shows �les with corresponding permissions, e.g.

peter@tyrion:/etc$ ls -l passwd shadow

-rw-r--r-- 1 root root 2217 Nov 16 18:13 passwd

-rw-r----- 1 root shadow 1454 Nov 16 18:13 shadow

OS Security � Authentication and Authorization 41

UNIX/Linux protection model: objects

I Each object (�le) has
I an owner (user) and owner permissions
I a group and group permissions
I other permissions

I Permissions on a �le are read (r), write (w) and execute (x)

I Typically write permissions as 9 bits: rwx︸︷︷︸
owner

rwx︸︷︷︸
group

rwx︸︷︷︸
other

I Convenient way of writing this: 3 numbers from 0�7, e.g.:
I 750: owner may read, write, and execute; group may read and

execute, others may nothing
I 644: owner may read and write; group and others may read

I Command ls -l shows �les with corresponding permissions, e.g.

peter@tyrion:/etc$ ls -l passwd shadow

-rw-r--r-- 1 root root 2217 Nov 16 18:13 passwd

-rw-r----- 1 root shadow 1454 Nov 16 18:13 shadow

OS Security � Authentication and Authorization 41

UNIX/Linux protection model: objects

I Each object (�le) has
I an owner (user) and owner permissions
I a group and group permissions
I other permissions

I Permissions on a �le are read (r), write (w) and execute (x)

I Typically write permissions as 9 bits: rwx︸︷︷︸
owner

rwx︸︷︷︸
group

rwx︸︷︷︸
other

I Convenient way of writing this: 3 numbers from 0�7, e.g.:
I 750: owner may read, write, and execute; group may read and

execute, others may nothing
I 644: owner may read and write; group and others may read

I Command ls -l shows �les with corresponding permissions, e.g.

peter@tyrion:/etc$ ls -l passwd shadow

-rw-r--r-- 1 root root 2217 Nov 16 18:13 passwd

-rw-r----- 1 root shadow 1454 Nov 16 18:13 shadow

OS Security � Authentication and Authorization 41

UNIX/Linux protection model: matching

I When a process wants to access a �le, check the following

1. Does the e�ective user ID of the process match the owner of the
�le? If so, use the owner permissions.

2. Does one of the group IDs of the process match the group of the
�le? If so, use the group permissions.

3. Otherwise, use the �other� permissions

I Note: if the owner matches, the group permissions don't matter.

Directory permissions

I read: Can see content (�les and subdirectories) of the directory

I write: Can rename and delete content of the directory and create
new content

I execute: Can traverse the directory (cd into or across the directory)

OS Security � Authentication and Authorization 42

UNIX/Linux protection model: matching

I When a process wants to access a �le, check the following

1. Does the e�ective user ID of the process match the owner of the
�le? If so, use the owner permissions.

2. Does one of the group IDs of the process match the group of the
�le? If so, use the group permissions.

3. Otherwise, use the �other� permissions

I Note: if the owner matches, the group permissions don't matter.

Directory permissions

I read: Can see content (�les and subdirectories) of the directory

I write: Can rename and delete content of the directory and create
new content

I execute: Can traverse the directory (cd into or across the directory)

OS Security � Authentication and Authorization 42

UNIX/Linux protection model: matching

I When a process wants to access a �le, check the following

1. Does the e�ective user ID of the process match the owner of the
�le? If so, use the owner permissions.

2. Does one of the group IDs of the process match the group of the
�le? If so, use the group permissions.

3. Otherwise, use the �other� permissions

I Note: if the owner matches, the group permissions don't matter.

Directory permissions

I read: Can see content (�les and subdirectories) of the directory

I write: Can rename and delete content of the directory and create
new content

I execute: Can traverse the directory (cd into or across the directory)

OS Security � Authentication and Authorization 42

UNIX/Linux protection model: matching

I When a process wants to access a �le, check the following

1. Does the e�ective user ID of the process match the owner of the
�le? If so, use the owner permissions.

2. Does one of the group IDs of the process match the group of the
�le? If so, use the group permissions.

3. Otherwise, use the �other� permissions

I Note: if the owner matches, the group permissions don't matter.

Directory permissions

I read: Can see content (�les and subdirectories) of the directory

I write: Can rename and delete content of the directory and create
new content

I execute: Can traverse the directory (cd into or across the directory)

OS Security � Authentication and Authorization 42

UNIX/Linux protection model: matching

I When a process wants to access a �le, check the following

1. Does the e�ective user ID of the process match the owner of the
�le? If so, use the owner permissions.

2. Does one of the group IDs of the process match the group of the
�le? If so, use the group permissions.

3. Otherwise, use the �other� permissions

I Note: if the owner matches, the group permissions don't matter.

Directory permissions

I read: Can see content (�les and subdirectories) of the directory

I write: Can rename and delete content of the directory and create
new content

I execute: Can traverse the directory (cd into or across the directory)

OS Security � Authentication and Authorization 42

The setuid bit

I Sometimes users need to have access to privileged resources

I UNIX/Linux solution: additional setuid (suid) bit in �le permissions

I Run program with permissions of owner instead of user starting it

I Set suid bit with chmod u+s or, e.g., chmod 4755

I User IDs of a suid program:
I Real user ID: ID of the user starting the program
I E�ective user ID: ID of the owner
I Saved user ID: set to e�ective user ID at the beginning

I Most important application: setuid root

I Setuid root process can drop privileges (e�ective ID)

I Can regain root rights as long as saved ID is still 0!

OS Security � Authentication and Authorization 43

The setuid bit

I Sometimes users need to have access to privileged resources

I UNIX/Linux solution: additional setuid (suid) bit in �le permissions

I Run program with permissions of owner instead of user starting it

I Set suid bit with chmod u+s or, e.g., chmod 4755

I User IDs of a suid program:
I Real user ID: ID of the user starting the program
I E�ective user ID: ID of the owner
I Saved user ID: set to e�ective user ID at the beginning

I Most important application: setuid root

I Setuid root process can drop privileges (e�ective ID)

I Can regain root rights as long as saved ID is still 0!

OS Security � Authentication and Authorization 43

The setuid bit

I Sometimes users need to have access to privileged resources

I UNIX/Linux solution: additional setuid (suid) bit in �le permissions

I Run program with permissions of owner instead of user starting it

I Set suid bit with chmod u+s or, e.g., chmod 4755

I User IDs of a suid program:
I Real user ID: ID of the user starting the program
I E�ective user ID: ID of the owner
I Saved user ID: set to e�ective user ID at the beginning

I Most important application: setuid root

I Setuid root process can drop privileges (e�ective ID)

I Can regain root rights as long as saved ID is still 0!

OS Security � Authentication and Authorization 43

The setuid bit

I Sometimes users need to have access to privileged resources

I UNIX/Linux solution: additional setuid (suid) bit in �le permissions

I Run program with permissions of owner instead of user starting it

I Set suid bit with chmod u+s or, e.g., chmod 4755

I User IDs of a suid program:
I Real user ID: ID of the user starting the program
I E�ective user ID: ID of the owner
I Saved user ID: set to e�ective user ID at the beginning

I Most important application: setuid root

I Setuid root process can drop privileges (e�ective ID)

I Can regain root rights as long as saved ID is still 0!

OS Security � Authentication and Authorization 43

setuid example: su

I Most prominent example of setuid-root program: su

I su can stand for �switch user� or �superuser�

I Without any argument, become root

I Can provide other username as argument

I Authentication uses PAM, typical (piece of) /etc/pam.d/su:

auth sufficient pam_rootok.so

session required pam_limits.so

auth required pam_unix.so

I Other prominent example: passwd (needs write access to
/etc/shadow)

I Again, authenticate against PAM before doing anything

OS Security � Authentication and Authorization 44

setuid example: su

I Most prominent example of setuid-root program: su

I su can stand for �switch user� or �superuser�

I Without any argument, become root

I Can provide other username as argument

I Authentication uses PAM, typical (piece of) /etc/pam.d/su:

auth sufficient pam_rootok.so

session required pam_limits.so

auth required pam_unix.so

I Other prominent example: passwd (needs write access to
/etc/shadow)

I Again, authenticate against PAM before doing anything

OS Security � Authentication and Authorization 44

setuid example: su

I Most prominent example of setuid-root program: su

I su can stand for �switch user� or �superuser�

I Without any argument, become root

I Can provide other username as argument

I Authentication uses PAM, typical (piece of) /etc/pam.d/su:

auth sufficient pam_rootok.so

session required pam_limits.so

auth required pam_unix.so

I Other prominent example: passwd (needs write access to
/etc/shadow)

I Again, authenticate against PAM before doing anything

OS Security � Authentication and Authorization 44

Privilege escalation

I Attack that expands attacker's privileges is called privilege escalation

I Two types of privilege escalation:
I horizontal: obtain privileges of another un-privileged user
I vertical: obtain privileges of root (or the kernel), �privilege elevation�

I Typicall enabled by bugs in privileged software:
I Bugs in the kernel
I Bugs in how root programs process user-provided input
I Bugs in suid-root programs (escape intended functionality)

I An exploit that lets an unprivileged (logged in, local) user gain root
rights is called local root exploit

OS Security � Authentication and Authorization 45

Privilege escalation

I Attack that expands attacker's privileges is called privilege escalation

I Two types of privilege escalation:
I horizontal: obtain privileges of another un-privileged user
I vertical: obtain privileges of root (or the kernel), �privilege elevation�

I Typicall enabled by bugs in privileged software:
I Bugs in the kernel
I Bugs in how root programs process user-provided input
I Bugs in suid-root programs (escape intended functionality)

I An exploit that lets an unprivileged (logged in, local) user gain root
rights is called local root exploit

OS Security � Authentication and Authorization 45

Privilege escalation

I Attack that expands attacker's privileges is called privilege escalation

I Two types of privilege escalation:
I horizontal: obtain privileges of another un-privileged user
I vertical: obtain privileges of root (or the kernel), �privilege elevation�

I Typicall enabled by bugs in privileged software:
I Bugs in the kernel
I Bugs in how root programs process user-provided input
I Bugs in suid-root programs (escape intended functionality)

I An exploit that lets an unprivileged (logged in, local) user gain root
rights is called local root exploit

OS Security � Authentication and Authorization 45

Access control lists

I User/Group/All model is not always �exible enough

I Want to enable arbitrary access permissions

I Solution: Access Control Lists (ACLs)

I Grant permissions to arbitrary users and groups

I Needs support from the �le system

I Mount with option acl, for example:

mount -o remount,acl /

I Set ACL entries with the program setfacl (set �le access control
lists)

I Read ACL entries with getfacl (get �le access control lists)

I Note: ls -l will not show ACLs, only a '+' to indicate that �there's
more�

OS Security � Authentication and Authorization 46

Access control lists

I User/Group/All model is not always �exible enough

I Want to enable arbitrary access permissions

I Solution: Access Control Lists (ACLs)

I Grant permissions to arbitrary users and groups

I Needs support from the �le system

I Mount with option acl, for example:

mount -o remount,acl /

I Set ACL entries with the program setfacl (set �le access control
lists)

I Read ACL entries with getfacl (get �le access control lists)

I Note: ls -l will not show ACLs, only a '+' to indicate that �there's
more�

OS Security � Authentication and Authorization 46

Access control lists

I User/Group/All model is not always �exible enough

I Want to enable arbitrary access permissions

I Solution: Access Control Lists (ACLs)

I Grant permissions to arbitrary users and groups

I Needs support from the �le system

I Mount with option acl, for example:

mount -o remount,acl /

I Set ACL entries with the program setfacl (set �le access control
lists)

I Read ACL entries with getfacl (get �le access control lists)

I Note: ls -l will not show ACLs, only a '+' to indicate that �there's
more�

OS Security � Authentication and Authorization 46

UNIX weaknesses: assuming benign processes

I UNIX and Linux are built on the assumption that user processes
behave benignly

I A malicious process can easily violate a user's security goals

I Mainly two ways why processes may be malicious:
I user accidentally runs malware (more later in the lecture)
I process operates on maliciously crafted input (in particular network

processes)

I This is a problem of all mainstream �classical� operating systems!

I Ideal situation: OS enforces security:
I Clearly de�ned security goals (con�dentiality, integrity)
I All software outside the TBC can be arbitrarily malicious
I OS still enforces the security goals

I No current mainstream OS achieves this goal

I Requires mandatory access control

OS Security � Authentication and Authorization 47

UNIX weaknesses: assuming benign processes

I UNIX and Linux are built on the assumption that user processes
behave benignly

I A malicious process can easily violate a user's security goals

I Mainly two ways why processes may be malicious:
I user accidentally runs malware (more later in the lecture)
I process operates on maliciously crafted input (in particular network

processes)

I This is a problem of all mainstream �classical� operating systems!

I Ideal situation: OS enforces security:
I Clearly de�ned security goals (con�dentiality, integrity)
I All software outside the TBC can be arbitrarily malicious
I OS still enforces the security goals

I No current mainstream OS achieves this goal

I Requires mandatory access control

OS Security � Authentication and Authorization 47

UNIX weaknesses: assuming benign processes

I UNIX and Linux are built on the assumption that user processes
behave benignly

I A malicious process can easily violate a user's security goals

I Mainly two ways why processes may be malicious:
I user accidentally runs malware (more later in the lecture)
I process operates on maliciously crafted input (in particular network

processes)

I This is a problem of all mainstream �classical� operating systems!

I Ideal situation: OS enforces security:
I Clearly de�ned security goals (con�dentiality, integrity)
I All software outside the TBC can be arbitrarily malicious
I OS still enforces the security goals

I No current mainstream OS achieves this goal

I Requires mandatory access control

OS Security � Authentication and Authorization 47

